Linux日志文件系统ext3|Linux的根分区的文件系统类型是什么

Linux日志文件系统ext3|Linux的根分区的文件系统类型是什么的第1张示图

『壹』 关于linux下EXT3文件系统的日志是必须的吗

一、简介 日志文件系统就是在传统文件系统的基础上,加入文件系统更改的日志记录,它的设计思想是:跟踪记录文件系统的变化,并将变化内容记录入日志。日志文件系统在磁盘分区中保存有日志记录,写操作首先是对记录文件进行操作,若整个写操作由于某种原因(如系统掉电)而中断,系统重启时,会根据日志记录来恢复中断前的写操作。在日志文件系统中,所有的文件系统的变化都被记录到日志,每隔一定时间,文件系统会将更新后的元数据及文件内容写入磁盘。在对元数据做任何改变以前,文件系统驱动程序会向日志中写入一个条目,这个条目描述了它将要做些什么,然后它修改元数据。二、Ext3 Ext3文件系统是直接从Ext2文件系统发展而来,目前Ext3文件系统已经非常稳定可靠,它完全兼容Ext2文件系统,用户可以平滑地过渡到一个日志功能健全的文件系统。Ext3日志文件系统的思想就是对文件系统进行的任何高级修改都分两步进行。首先,把待写块的一个副本存放在日志中;其次,当发往日志的I/O 数据传送完成时(即数据提交到日志),块就写入文件系统。当发往文件系统的I/O 数据传送终止时(即数据提交给文件系统),日志中的块副本就被丢弃。2.1 Ext3日志模式 Ext3既可以只对元数据做日志,也可以同时对文件数据块做日志。具体来说,Ext3提供以下三种日志模式: 日志(Journal ) 文件系统所有数据和元数据的改变都记入日志。这种模式减少了丢失每个文件所作修改的机会,但是它需要很多额外的磁盘访问。日志机制面临“写两遍”问题。例如,当一个新文件被创建时,它的所有数据块都必须复制一份作为日志记录。这是最安全和最慢的Ext3日志模式。写回(Writeback ) 只有对文件系统元数据的改变才记入日志,是最快的模式。可以极大减少“写两遍”带来的开销,从而提高写速度,但只能保证元数据一致性。例如,数据尚未写入文件系统而元数据已经写入设备,系统宕机后这部分元数据可以从日志中恢复但是数据已经丢失无法恢复,这就可能造成元数据引用到垃圾数据,因此无法保证文件系统数据一致性。预定(Ordered ) 只有对文件系统元数据的改变才记入日志,但与写回模式不同的是,预定模式严格控制写顺序,即在将元数据写入日志之前必须保证数据已经写入文件系统。这样对于追加写而言,即便写数据中断时元数据尚未写入,由于这部分数据还没有被元数据引用,因此重启后看不到任何垃圾数据。若在写数据过程中断,则直接用元数据日志记录恢复即可。然而,如果是覆盖写,宕机后被覆盖的部分无法恢复,不能保证版本一致性。故预定模式只能保证文件系统数据一致性。这是缺省的Ext3 日志模式。2.2 日志块设备(JBD) Ext3文件系统本身不处理日志,而是利用JBD(Journaling Block Device,块设备日志)。Ext3文件系统调用JDB例程以确保在系统万一出现故障时它的后续操作不会损坏磁盘数据结构。Ext3与JDB之间的交互本质上基于三个基本单元:日志记录,原子操作和事务。 Ext3将正在执行的更新操作通知给JBD,JBD接管更新操作涉及的缓冲区(buffer)。这些缓冲区将JBD接管的缓冲区称为日志缓冲区(journal buffer),由JBD在缓冲区头结构(buffer head)之上增加一个日志头结构(journal head)进行管理。所有的日志流程均由JBD控制。 JBD的数据流包含两个部分:写日志和写文件系统。ps: 文件系统一致性的层次: 1.元数据一致 2.数据一致:不仅要求元数据一致,还要求元数据中引用的数据块必须属于该文件。 3.版本一致:要求元数据中引用的数据块不但属于该文件,还要跟元数据中所标明的版本保持一致。

『贰』 Linux系统中系统文件有什么特点

般linux常用的文件系统有ext2、ext3、ext4

Linux ext2/ext3文件系统使用索引节点来记录文件信息,作用像windows的文件分配表。索引节点是一个结构,它包含了一个文件的长度、创建及修改时间、权限、所属关系、磁盘中的位置等信息。

Linux之前缺省情况下使用的文件系统为Ext2,ext2文件系统的确高效稳定。但是,随着Linux系统在关键业务中的应用,Linux文件系统的弱点也渐渐显露出来了:其中系统缺省使用的ext2文件系统是非日志文件系统。

Ext3文件系统是直接从Ext2文件系统发展而来,目前ext3文件系统已经非常稳定可靠。它完全兼容ext2文件系统。用户可以平滑地过渡到一个日志功能健全的文件系统中来。这实际上了也是ext3日志文件系统初始设计的初衷。

Linux kernel 自 2.6.28 开始正式支持新的文件系统 Ext4。 Ext4 是 Ext3 的改进版,修改了 Ext3 中部分重要的数据结构,而不仅仅像 Ext3 对 Ext2 那样,只是增加了一个日志功能而已。Ext4 可以提供更佳的性能和可靠性,还有更为丰富的功能:

与 Ext3 兼容。

更大的文件系统和更大的文件。Ext4 分别支持 1EB(1,048,576TB, 1EB=1024PB, 1PB=1024TB)的文件系统,以及 16TB 的文件。

无限数量的子目录。

多块分配

延迟分配

日志校验

在线碎片整理

『叁』 关于linux下EXT3文件系统的日志是必须的吗

Ext3日志文件系统的特点 1、高可用性 系统使用了ext3文件系统后,即使在非正常关机后,系统也不需要检查文件系统。宕机发生后,恢复ext3文件系统的时间只要数十秒钟。 2、数据的完整性: ext3文件系统能够极大地提高文件系统的完整性,避免了意外宕机对文件系统的破坏。在保证数据完整性方面,ext3文件系统有2种模式可供选择。其中之一就是“同时保持文件系统及数据的一致性”模式。采用这种方式,你永远不再会看到由于非正常关机而存储在磁盘上的垃圾文件。 3、文件系统的速度: 尽管使用ext3文件系统时,有时在存储数据时可能要多次写数据,但是,从总体上看来,ext3比ext2的性能还要好一些。这是因为ext3的日志功能对磁盘的驱动器读写头进行了优化。所以,文件系统的读写性能较之Ext2文件系统并来说,性能并没有降低。 4、数据转换 由ext2文件系统转换成ext3文件系统非常容易,只要简单地键入两条命令即可完成整个转换过程,用户不用花时间备份、恢复、格式化分区等。用一个ext3文件系统提供的小工具tune2fs,它可以将ext2文件系统轻松转换为ext3日志文件系统。另外,ext3文件系统可以不经任何更改,而直接加载成为ext2文件系统。 5、多种日志模式 Ext3有多种日志模式,一种工作模式是对所有的文件数据及metadata(定义文件系统中数据的数据,即数据的数据)进行日志记录(data=journal模式);另一种工作模式则是只对metadata记录日志,而不对数据进行日志记录,也即所谓data=ordered或者data=writeback模式。系统管理人员可以根据系统的实际工作要求,在系统的工作速度与文件数据的一致性之间作出选择。

『肆』 Linux文件系统的演变

说起文件系统的演变与发展,不得不从最早期的 Minix 操作系统开始说起。

Minix(MINI-UNIX) 是早期的一个迷你版本的 「类UNIX操作系统」 ,由荷兰阿姆斯特丹自由大学计算机科学系的塔能鲍姆教授自行开发的可以与UNIX操作系统兼容的一个操作系统,因其小型,该操作系统被命名为 MINIX 。

MINIX 系统在设计之初,采用程序模块化的思想,将一众程序放在用户空间运行,而不是在操作系统的内核中运行。如 「文件系统」 和 「存储器管理」 等程序均是如此。

受 MINIX 操作系统的影响,早期的Linux操作系统也曾采用由塔能鲍姆教授开发的MINIX的文件系统。

然而,不只因为早期的 MINIX 操作系统并为真正意义上的开源软件(在保护著作的前提下进行收费),而且基于 MINIX 的内部使用16位的偏移量,使文件系统能够支持的最大空间只有64MB,支持的最大文件名为14字符,导致后来 Linux 操作系统转而开发出了 ext(Extended File System) 第一代可扩展文件系统。

ext(Extended File System) 为Linux系统最早的扩展文件系统,采用 「UNIX文件系统」 的元数据结构,克服了 「MINIX」 操作系统性能不佳的问题。

ext 文件系统采用 虚拟文件系统(VFS) ,最大可支持2GB的文件系统。与 MINIX 文件系统不同的是, ext 可以使用最高2GB的存储空间并同时处理255个字符的文件名。

但,在 ext 文件系统中,文件创建时生成的 inode 信息是不变的,这导致文件发生修改后 inode 中储存的文件时间戳并不会发生变化;而且 ext 并不会为文件妥善分配空间,磁盘上的多个文件四散分布,严重制约了文件系统的性能。

ext 文件系统推出后不久,其开发者便意识到 ext 文件系统中存在很大缺陷( inode不变性 和 文件空间碎片化 ),并在一年后推出了 ext2 (Second Extened File System) 第二代扩展文件系统,用来代替 ext 文件系统。

ext2 吸取了 「UNIX文件系统」 的众多优点,并且因其良好的可扩展性( 为系统在磁盘上存储的数据结构预留了很多空间提供给开发者使用 ),在20世纪90年代众多文件系统中脱颖而出。

众多新的特性, POSIX(可移植操作系统接口) 、 访问控制表 等都是在这一代扩展文件系统上实现的。直至今天, POSIX 仍被众多操作系统所沿用。

不仅如此, ext2 还在 ext 的基础上进行了完善,能够最大支持的单个文件达到 2TB。

ext2 文件系统与20世纪90年代的众多文件系统一样,将数据写入到磁盘的过程中如果发生系统奔溃或断电,极容易导致文件损坏或丢失。

正是因为类似 ext2 等同时期的一众文件系统,在遭遇系统奔溃或断电时会出现文件损坏或丢失。尽管 ext2 文件系统拥有开机后对文件系统中文件的一致性校验,但校验的过程极为耗时,且校验的过程中,操作系统上的任何卷组都是不可访问的。

然而 ext2 遗留的问题在 ext3(Third Extended File System) 中得到了解决。

ext3 文件系统采用日志记录的方式,记录下了操作系统运行中的所有事件,这意味着即便遇到操作系统非正常关机后也无须对文件系统进行校验,从而防止了文件系统中数据丢失的可能。

尽管 ext3 使用日志系统进行记录文件系统的变化,但这并没有影响 ext3 文件系统处理数据的速度。基于日志系统在磁盘上的优化,在 ext3 中数据的传输效率是高于 ext2 的,并且可以通过重新设置日志的级别来提升文件系统的性能。

其次, ext3 在设计之初就吸收了 ext2 的很多思想,这使得 ext2 文件系统迁移到 ext3 变得极为便利。事实上, ext3 可以在从 ext2 迁移 ext3 的过程中,无须进行文件系统资料的备份,且无须担心升级后的数据恢复问题。

也正是因为 ext3 设计之初沿用了众多 ext2 的功能,这使得 ext3 缺乏变通。例如, 「inode的动态分配」 和 「可变块大小」 等问题并没有得到解决。不仅如此, ext3 文件系统在被挂载为写入时,无法对文件系统进行完整性校验。

第四代扩展文件系统( Fourth Extended File System, ext4 ) 是继 ext3 文件系统的后续版本,不仅支持 ext3 的日志文件体系 ,同样支持 大文件系统 ,不仅提高了文件系统对于存储碎片化的抵抗,而且改进了 inode固一化 的问题。

同时, ext4 文件系统在开发之初就考虑到很多问题,对众多问题的优化和改进也使得 ext4 拥有了众多新的特性。例如, 大文件系统 、 使用Extent文件存储的方式 、 预分配空间 、 延迟文件获取空间的时间 、 突破原有子目录限制 、 增加日志校验和 、 在线整理磁盘 、 文件系统快速检查 、 向下兼容其他ext文件系统`。

时至今天, ext4 文件系统已经成为Linux发行版默认使用的文件系统。

与 ext2 文件系统同一时期出现的,还有 xfs 文件系统。 xfs 文件系统是高性能的文件系统,最早在 IRIX 操作系统上开发,后期被移植到 Linux 操作系统上。现在所有的 Linux发行版 都支持 xfs 的使用。

相比 32位 Linux 的操作系统来说,64位 xfs 的文件系统能够支持的单个文件系统要远远超出 32位 操作系统。

xfs 对文件系统元数据提供了日志支持,当文件系统发生变化后,总是会保证源数据在数据块写入磁盘之前被写入日志中,磁盘中有一处缓冲区专门用来存放日志,从而不会影响正常的文件系统。

xfs 同样支持 「条带化分配」 。在条带化RAID阵列上创建 xfs 文件系统时,可以指定 条带化数据单元。通过配置条带化单元,使 数据分配、inode分配、日志等与RAID条带单元对齐,来提高文件系统的性能。

与 ext4 文件系统不同的是, xfs 文件系统还支持在线恢复。 xfs 文件系统提供了 xfsmp 和 xfsrestore 工具协助备份 xfs 文件系统中的数据。

以下为各文件系统的出现时间及特性:

参考自: https://zh.wikipedia.org/wiki/Ext4

『伍』 Linux的根分区的文件系统类型是什么

linux文件系统格式挺复杂多样的,如ext、ext2、ext3、ext4、jsf、 、xfs、ReiserFS等。一般情况下,linux根分区文件系统多数用ext3、ext4,安装时你可以选择。

『陆』 Linux系统中系统文件有什么特点

类似于 Windows下的C、D、E等各个盘,Linux系统也可以将磁盘、Flash等存储设备划分为若干个分区,在不同分区存放不同类别的文件。与Windows的C盘类似,Linux一样要在一个分区上存放系统启动所必需的文件,比如内核映象文件(在嵌入式系统中,内核一般单独存放在一个分区中)内核启动后运行的第一-个程序( init)给用户提供操作界面的 shell程序、应用程序所依赖的库等。这些必需、基本的文件合称为根文件系统,它们存放在一个分区中。Linux 系统启动后首先挂接这个分区,称为挂接( mount)根文件系统。其他分区上所有目录、文件的集合,也称为文件系统。Linux 中并没有C、D、E等盘符的概念,它以树状结构管理所有目录、文件,其他分区挂接在某个目录上,这个目录被称为挂接点或安装点(mount point),然后就可以通过这个目录来访问这个分区上的文件了。比如根文件系统被挂接在根目录“I”上后,在根目录下就有根文件系统的各个目录、文件:/bin、/sbin、/mnt等;再将其他分区挂接到/mnt目录上,/mnt目录下就有这个分区.的各个目录、文件。在一个分区上存储文件时,需要遵循一定的格式,这种格式称为文件系统类型,比如fat16、fat32、ntfs、ext2、ext3、jffs2、yaffs 等。除这些拥有实实在在的存储分区的文件系统类型外,Linux还有几种虚拟的文件系统类型,比如proc、sysfs 等,它们的文件并不存储在实际的设备上,而是在访问它们时由内核临时生成。比如 proc文件系统下的uptime文件,读取它时可以得到两个时间值(用来表示系统启动后运行的秒数、空闲的秒数),每次读取时都由内核即刻生成,每次读取结果都不一样。“文件系统类型”常被简称为“文件系统”,比如“硬盘第二个分区上的文件系统是EXT2”指的就是文件系统类型。所以“文件系统”这个术语,有时候指的是分区上的文件集合,有时候指的是文件系统类型,需要根据语境分辨,在阅读各类文献时需要注意这点。

『柒』 linux的ext2格式跟ext3格式有啥区别

Linuxext2/ext3文件系统使用索引节点来记录文件信息,作用像windows的文件分配表。索引节点是一个结构,它包含了一个文件的长度、创建及修改时间、权限、所属关系、磁盘中的位置等信息。一个文件系统维护了一个索引节点的数组,每个文件或目录都与索引节点数组中的唯一一个元素对应。系统给每个索引节点分配了一个号码,也就是该节点在数组中的索引号,称为索引节点号。linux文件系统将文件索引节点号和文件名同时保存在目录中。所以,目录只是将文件的名称和它的索引节点号结合在一起的一张表,目录中每一对文件名称和索引节点号称为一个连接。对于一个文件来说有唯一的索引节点号与之对应,对于一个索引节点号,却可以有多个文件名与之对应。因此,在磁盘上的同一个文件可以通过不同的路径去访问它。Linux缺省情况下使用的文件系统为Ext2,ext2文件系统的确高效稳定。但是,随着Linux系统在关键业务中的应用,Linux文件系统的弱点也渐渐显露出来了:其中系统缺省使用的ext2文件系统是非日志文件系统。这在关键行业的应用是一个致命的弱点。本文向各位介绍Linux下使用ext3日志文件系统应用。Ext3文件系统是直接从Ext2文件系统发展而来,目前ext3文件系统已经非常稳定可靠。它完全兼容ext2文件系统。用户可以平滑地过渡到一个日志功能健全的文件系统中来。这实际上了也是ext3日志文件系统初始设计的初衷。Ext3日志文件系统的特点1、高可用性系统使用了ext3文件系统后,即使在非正常关机后,系统也不需要检查文件系统。宕机发生后,恢复ext3文件系统的时间只要数十秒钟。2、数据的完整性:ext3文件系统能够极大地提高文件系统的完整性,避免了意外宕机对文件系统的破坏。在保证数据完整性方面,ext3文件系统有2种模式可供选择。其中之一就是“同时保持文件系统及数据的一致性”模式。采用这种方式,你永远不再会看到由于非正常关机而存储在磁盘上的垃圾文件。3、文件系统的速度:尽管使用ext3文件系统时,有时在存储数据时可能要多次写数据,但是,从总体上看来,ext3比ext2的性能还要好一些。这是因为ext3的日志功能对磁盘的驱动器读写头进行了优化。所以,文件系统的读写性能较之Ext2文件系统并来说,性能并没有降低。4、数据转换由ext2文件系统转换成ext3文件系统非常容易,只要简单地键入两条命令即可完成整个转换过程,用户不用花时间备份、恢复、格式化分区等。用一个ext3文件系统提供的小工具tune2fs,它可以将ext2文件系统轻松转换为ext3日志文件系统。另外,ext3文件系统可以不经任何更改,而直接加载成为ext2文件系统。5、多种日志模式Ext3有多种日志模式,一种工作模式是对所有的文件数据及metadata(定义文件系统中数据的数据,即数据的数据)进行日志记录(data=journal模式);另一种工作模式则是只对metadata记录日志,而不对数据进行日志记录,也即所谓data=ordered或者data=writeback模式。系统管理人员可以根据系统的实际工作要求,在系统的工作速度与文件数据的一致性之间作出选择。实际使用Ext3文件系统创建新的ext3文件系统,例如要把磁盘上的hda8分区格式化ext3文件系统,并将日志记录在/dev/hda1分区,那么操作过程如下:[[email protected]root]#mke2fs-j/dev/hda8mke2fs1.24a(02-Sep-2001)Filesystemlabel=OStype:LinuxBlocksize=1024(log=0)……Creatingjournal(8192blocks):doneWritingsuperblocksandfilesystemaccountinginformation:doneThisfilesystemwillbeautomaticallycheckedevery30mountsor180days,whichevercomesfirst.Usetune2fs-cor-itooverride.在创建新的文件系统时,可以看到,ext3文件系统执行自动检测的时间为180天或每第31次被mount时,实际上这个参数可以根据需要随意调节。以下将新的文件系统mount到主分区/data目录下:[[email protected]root]#mount-text3/dev/hda8/data说明:以上将已格式化为ext3文件系统的/dev/hda8分区加载到/data目录下。ext3基于ext2的代码,它的磁盘格式和ext2的相同;这意味着,一个干净卸装的ext3文件系统可以作为ext2文件系统重新挂装。Ext3文件系统仍然能被加载成ext2文件系统来使用,你可以把一个文件系统在ext3和ext2自由切换。这时在ext2文件系统上的ext3日志文件仍然存在,只是ext2不能认出日志而已。将ext2文件系统转换为ext3文件系统将linux系统的文件系统由ext2转至ext3,有以下几处优点:第一系统的可用性增强了,第二数据集成度提高,第三启动速度提高了,第四ext2与ext3文件系统之间相互转换容易。以转换文件系统为例,将ext2文件系统转换为ext3文件系统,命令如下:[[email protected]root]#tune2fs-j/dev/hda9tune2fs1.24a(02-Sep-2001)Creatingjournalinode:doneThisfilesystemwillbeautomaticallycheckedevery31mountsor180days,whichevercomesfirst.Usetune2fs-cor-itooverride.这样,原来的ext2文件系统就转换成了ext3文件系统。注意将ext2文件系统转换为ext3文件系统时,不必要将分区缷载下来转换。转换完成后,不要忘记将/etc/fstab文件中所对应分区的文件系统由原来的ext2更改为ext3。ext3日志的存放位置可以将日志放置在另外一个存储设备上,例如存放到分区/dev/hda8。例如要在/dev/hda8上创建一个ext3文件系统,并将日志存放在外部设备/dev/hda2上,则运行以下命令:[root@stationxxroot]#mke2fs-Jdevice=/dev/hda8/dev/hda2ext3文件系统修复新的e2fsprogs中的e2fsck支持ext3文件系统。当一个ext3文件系统被破坏时,先卸载该设备,在用e2fsck修复:[root@stationxxroot]#umount/dev/hda8[root@stationxxroot]#e2fsck-fy/dev/hda8总而言之,ext3日志文件系统是目前linux系统由ext2文件系统过度到日志文件系统最为简单的一种选择,实现方式也最为简洁。由于是直接从ext2文件系统发展而来,系统由ext2文件系统过渡到ext3日志文件系统升级过程平滑,可以最大限度地保证系统数据的安全性。目前linux系统要使用日志文件系统,最保险的方式就是选择ext3文件系统。

『捌』 Linux里面文件系统有哪些

Linux系统是现在非常受欢迎的操作系统,在Linux之中,一切都是文件,因为有很多操作都是依靠文件系统才可以完成的,而且文件系统可以满足用户正常的使用,那么Linux中常见的文件系统有哪些?为大家介绍一下。总体来说,在Linux之中,系统能够支持的文件系统要比Windows系统多很多,达到数十种,所以说Linux系统也是非常出色的操作系统。Linux中常见的文件系统介绍:1、Ext3:是一款日志文件系统,能够在系统异常的情况下避免文件系统资料丢失,并且能够修复数据的不一致以及错误,同时,当硬盘容量较大的时候,所需要的修复时间也会增长,无法保证百分之百资料不会丢失,将整体磁盘的每个写入动作细节预先记录,避免发生异常的时候可追踪到被中断的部分,尝试修补。2、Ext4:是上一个的改进版本,是RHEL6系统中的默认文件管理系统,支持存储容量达到了1EB,同时还能够无限多的子目录,另外文件系统能够批量分配block块,从而极大地提高了读写效率。3、XFS:是一个高性能的日志文件系统,而且是RHEL7中默认的文件管理系统,优势就是在于发生意外可以快速回复可能被破坏的文件,强大的日志功能只需要花费较低的计算和存储性能,最大支持存储容量18EB,几乎满足多种需求。

『玖』 Linux文件系统特点

Linux之所以能在嵌人式系统领域取得如此辉煌的成绩,与其自身的优良特性是分不开的。与其他操作系统相比,Linux具有以下一系列显著的特点。1.模块化程度高Linux的内核设计非常精巧,分成进程调度、内存管理、进程间通信、虚拟文件系统和网络接口五大部分;其独特的模块机制可根据用户的需要,实时地将某些模块插入或从内核中移走,使得Linux系统内核可以裁剪得非常小巧,很适合于嵌入式系统的需要。2.源码公开由于Linux系统的开发从一开始就与GNU项目紧密地结合起来,所以它的大多数组成部分都直接来自GNU项目。任何人、任何组织只要遵守GPL条款,就可以自由使用Linux 源代码,为用户提供了最大限度的自由度。这一点也正投嵌入式系统所好,因为嵌入式系统应用千差万别,设计者往往需要针对具体的应用对源码进行修改和优化,所以是否能获得源代码 对于嵌入式系统的开发是至关重要的。加之Linux的软件资源十分丰富,每种通用程序在Linux上几乎都可以找到,并且数量还在不断增加。这一切就使设计者在其基础之上进行二次开发变得非常容易。另外,由于Linux源代码公开,也使用户不用担心有“后闸”等安全隐患。同时,源码开放给各教育机构提供极大的方便,从而也促进了Linux的学习、推广和应用。3.广泛的硬件支持Linux能支持x86、ARM、MIPS、ALPHA和PowerPC等多种体系结构的微处理器。目前已成功地移植到数十种硬件平台,几乎能运行在所有流行的处理器上。由于世界范围内有众多开发者在为Linux的扩充贡献力量,所以Linux有着异常丰富的驱动程序资源,支持各种主流硬件设各和最新的硬件技术,甚至可在没有存储管理单元MMU 的处理器上运行,这些都进一步促进了Linux在嵌入式系统中的应用。4.安全性及可靠性好内核高效稳定。Linux内核的高效和稳定已在各个领域内得到了大量事实的验证。Linux中大量网络管理、网络服务等方面的功能,可使用户很方便地建立高效稳定的防火墙、路由器、工作站、服务器等。为提高安全性,它还提供了大量的网络管理软件、网络分析软件和网络安全软件等。5.具有优秀的开发工具开发嵌入式系统的关键是需要有一套完善的开发和调试工具。传统的嵌入式开发调试工具是在线仿真器(In Circuit Emulator,ICE),它通过取代目标板的微处理器,给目标程序提供一个完整的仿真环境,从而使开发者能非常清楚地了解到程序在目标板上的工作状态,便于监视和调试程序。在线仿真器的价格非常高,而且只适合做非常底层的调试。如果使用的是嵌人式Linux,一旦软硬件能支持正常的串口功能,即使不用在线仿真器,也可以很好地进行开发和调试工作,从而节省了一笔不小的开发费用。嵌入式Linux为开发者提供了一套完整的工具链(Tool Chain),能够很方便地实现从操作系统到应用软件各个级别的调试。6.有很好的网络支持利文件系统支持Linux从诞生之日起就与Internet密不可分,支持各种标准的Internet网络协议,并且很容易移植到嵌入式系统当中。目前,Linux几乎支持所有主流的网络硬件、网络协议和文件系统,因此它是NFS的一个很好的平台。另一方面,由于Linux有很好的文件系统支持(例如,它支持Ext2、FAT32、romfs等文件系统),是数据各份、同步和复制的良好平台,这些都为开发嵌入式系统应用打下了坚实的基础。7.与UNIX完全兼容目前,在Linux中所包含的工具和实用程序,可以完成UNIX的所有主要功能。但由于Linux不是为实时而设计的,因而这就成了Linux在实时系统中应用的最大遗憾。不过,目前有众多的自由软件爱好者正在为此进行不懈的努力,也取得了诸多成果

『拾』 ext2,ext3和ntfs有什么区别

ext2,ext3是复linux系统的日志文件系统,制NTFS是windows的文件系统。区别就是使用的系统不同,linux系统是基于命令行页面,Windows系统是基于图形界面。Windows系统相对应用较广泛和大众化,linux系统一般是企业用以服务器,使用没那么广泛和大众化。Windows操作系统中的本地磁盘使用的格式就包含了NTFS这种文件格式,NTFS 提供长文件名、数据保护和恢复,并通过目录和文件许可实现安全性。而ext2,ext3是linux系统的日志文件系统需通过命令方式进行查看。

未经允许不得转载:山九号 » Linux日志文件系统ext3|Linux的根分区的文件系统类型是什么

赞 (0)