开发文件系统|如何在 Linux下实现一个文件系统

开发文件系统|如何在 Linux下实现一个文件系统的第1张示图

1. 如何在 linux下实现一个文件系统

touch filename 就创建了一个文件名为filename的空文本文件 linux下的默认的文件格式都是纯文本 ,不用考虑后缀的问题

2. windows7支持的文件系统有哪些

windows7支持哪三种文件系统:

1,FAT

FAT文件系统诞生于1977年,它最初是为软盘设计的文件系统,但是后来随着微软推出dos和win 9x系统,FAT文件系统经过适配被逐渐用到了硬盘上,并且在那时的20年中,一直是主流的文件系统。

后来随着硬件技术的进步,硬盘的容量也越来越大,这种文件格式逐渐被扩展了,出现了FAT12,FAT16,FAT32等文件系统,甚至后来还出现了FAT64的文件系统。

2,NTFS

NTFS全称是New Technology File System,它是一种比FAT32功能更加强大的文件系统。

从windows 2000之后的windows系统的默认文件系统都是NTFS,而且这些windows系统只能够安装在NTFS格式的磁盘上。

3. 开发一个Windows级别的操作系统难度有多大

数万顶尖工程师,奋斗二十年,迭代十几次,才有了win桌面系统专。除了系统本身,还要提供很多属方便的编程接口,全套的编程环境,历史各大版本之间尽可能好的兼容性。嗯,还有安全性。真的挺难的,不管是系统本身,还是附带的生态建设,都是行业最顶尖的一批人钻研一生的成就。并不是说技术可行,就有可行性,数万人,高薪养十年,没人干这亏本的事

4. 如何实现一个文件系统

摘要:本文目的是分析在Linux系统中如何实现新的文件系统。在介绍文件系统具体实现前先介绍文件系统的概念和作用,抽象出了文件系统概念模型。熟悉文件系统的内涵后,我们再近一步讨论Linux系统中和文件系统的特殊风格和具体文件系统在Linux中组成结构,为读者勾画出Linux中文件系统工作的全景图。最后,我们再通过Linux中最简单的Romfs作实例分析实现文件系统的普遍步骤。(我们假定读者已经对Linux文件系统初步了解)什么是文件系统首先要谈的概念就是什么是文件系统,它的作用到底是什么。文件系统的概念虽然许多人都认为是再清晰不过的了,但其实我们往往在谈论中或多或少地夸大或片缩小了它的实际概念(至少我时常混淆),或者说,有时借用了其它概念,有时说的又不够全面。比如在操作系统中,文件系统这个术语往往既被用来描述磁盘中的物理布局,比如有时我们说磁盘中的“文件系统”是EXT2或说把磁盘格式化成FAT32格式的“文件系统”等——这时所说的“文件系统”是指磁盘数据的物理布局格式;另外,文件系统也被用来描述内核中的逻辑文件结构,比如有时说的“文件系统”的接口或内核支持Ext2等“文件系统”——这时所说的文件系统都是内存中的数据组织结构而并非磁盘物理布局。还有些时候说“文件系统”负责管理用户读写文件——这时所说的“文件系统”往往描述操作系统中的“文件管理系统”,也就是文件子系统。虽然上面我们列举了混用文件系统的概念的几种情形,但是却也不能说上述说法就是错误的,因为文件系统概念本身就囊括众多概念,几乎可以说在操作系统中自内存管理、系统调度到I/O系统、设备驱动等各个部分都和文件系统联系密切,有些部分和文件系统甚至未必能明确划分——所以不能只知道文件系统是系统中数据的存储结构,一定要全面认识文件系统在操作系统中的角色,才能具备自己开发新文件系统的能力。为了澄清文件系统的概念,必须先来看看文件系统在操作系统中处于何种角色,分析文件系统概念的内含外延。所以我们先抛开Linux文件系统的实例,而来看看操作系统中文件系统的普遍体系结构,从而增强对文件系统的理论认识。下面以软件组成的结构图[1]的方式描述文件系统所涉及的内容。 我们针对各层做以简要分析:首先我们来分析最低层——设备驱动层,该层负责与外设——磁盘等——通讯。基于磁盘的文件系统都需要和存储设备打交道,而系统操作外设离不开驱动程序。所以内核对文件的最后操作行为就是调用设备驱动程序完成从主存(内存)到辅存(磁盘)的数据传输。文件系统相关的多数设备都属于块设备,常见的块设备驱动程序有磁盘驱动,光驱驱动等,之所以称它们为块设备,一个原因是它们读写数据都是成块进行的,但是更重要的原因是它们管理的数据能够被随机访问——不需要向字符设备那样必须顺序访问。设备驱动层的上一层是物理I/O层,该层主要作为计算机外部环境和系统的接口,负责系统和磁盘交换数据块。它要知道据块在磁盘中存储位置,也要知道文件数据块在内存缓冲中的位置,另外它不需要了解数据或文件的具体结构。可以看到这层最主要的工作是标识别磁盘扇区和内存缓冲块[2]之间的映射关系。再上层是基础I/O监督层,该层主要负责选择文件 I/O需要的设备,调度磁盘请求等工作,另外分配I/O缓冲和磁盘空间也在该层完成。由于块设备需要随机访问数据,而且对速度响应要求较高,所以操作系统不能向对字符设备那样简单、直接地发送读写请求,而必须对读写请求重新优化排序,以能节省磁盘寻址时间,另外也必须对请求提交采取异步调度(尤其写操作)的方式进行。总而言之,内核对必须管理块设备请求,而这项工作正是由该层负责的。倒数第二层是逻辑I/O层,该层允许用户和应用程序访问记录。它提供了通用的记录(record)I/O操作,同时还维护基本文件数据。由于为了方便用户操作和管理文件内容,文件内容往往被组织成记录形式,所以操作系统为操作文件记录提供了一个通用逻辑操作层。和用户最靠近的是访问方法层,该层提供了一个从用户空间到文件系统的标准接口,不同的访问方法反映了不同的文件结构,也反映了不同的访问数据和处理数据方法。这一层我们可以简单地理解为文件系统给用户提供的访问接口——不同的文件格式(如顺序存储格式、索引存储格式、索引顺序存储格式和哈希存储格式等)对应不同的文件访问方法。该层要负责将用户对文件结构的操作转化为对记录的操作。对比上面的层次图我们再来分析一下数据流的处理过程,加深对文件系统的理解。假如用户或应用程序操作文件(创建/删除),首先需要通过文件系统给用户空间提供的访问方法层进入文件系统,接着由使用逻辑I/O层对记录进行给定操作,然后记录将被转化为文件块,等待和磁盘交互。这里有两点需要考虑——第一,磁盘管理(包括再磁盘空闲区分配文件和组织空闲区);第二,调度块I/O请求——这些由基础I/O监督层的工作。再下来文件块被物理I/O层传递给磁盘驱动程序,最后磁盘驱动程序真正把数据写入具体的扇区。至此文件操作完毕。当然上面介绍的层次结构是理想情况下的理论抽象,实际文件系统并非一定要按照上面的层次或结构组织,它们往往简化或合并了某些层的功能(比如Linux文件系统因为所有文件都被看作字节流,所以不存在记录,也就没有必要实现逻辑I/O层,进而也不需要在记录相关的处理)。但是大体上都需要经过类似处理。如果从处理对象上和系统独立性上划分,文件系统体系结构可以被分为两大部分:——文件管理部分和操作系统I/O部分。文件管理系统负责操作内存中文件对象,并按文件的逻辑格式将对文件对象的操作转化成对文件块的操作;而操作系统I/O部分负责内存中的块与物理磁盘中的数据交换。数据表现形式再文件操作过程中也经历了几种变化:在用户访问文件系统看到的是字节序列,而在字节序列被写入磁盘时看到的是内存中文件块(在缓冲中),在最后将数据写入磁盘扇区时看到的是磁盘数据块[3]。本文所说的实现文件系统主要针对最开始讲到第二种情况——内核中的逻辑文件结构(但其它相关的文件管理系统和文件系统磁盘存储格式也必须了解),我们用数据处理流图来分析一下逻辑文件系统主要功能和在操作系统中所处的地位。 其中文件系统接口与物理布局管理是逻辑文件系统要负责的主要功能。文件系统接口为用户提供对文件系统的操作,比如open、close、read、write和访问控制等,同时也负责处理文件的逻辑结构。物理存储布局管理,如同虚拟内存地址转化为物理内存地址时,必须处理段页结构一样,逻辑文件结构必须转化到物理磁盘中,所以也要处理物理分区和扇区的实际存储位置,分配磁盘空间和内存中的缓冲也要在这里被处理。所以说要实现文件系统就必须提供上面提到的两种功能,缺一不可。在了解了文件系统的功能后,我们针对Linux操作系统分析具体文件系统如何工作,进而掌握实现一个文件系统需要的步骤。Linux 文件系统组成结构Linux 文件系统的结构除了我们上面所提到的概念结构外,最主要有两个特点,一个是文件系统抽象出了一个通用文件表示层——虚拟文件系统或称做VFS。另外一个重要特点是它的文件系统支持动态安装(或说挂载、登陆等),大多数文件系统都可以作为根文件系统的叶子接点被挂在到根文件目录树下的子目录上。另外Linux系统在文件读写的I/O操作上也采取了一些先进技术和策略。我们先从虚拟文件系统入手分析linux文件系统的特性,然后介绍有关文件系统的安装、注册和读写等概念。虚拟文件系统虚拟文件系统为用户空间程序提供了文件系统接口。系统中所有文件系统不但依赖VFS共存,而且也依靠VFS系统协同工作。通过虚拟文件系统我们可以利用标准的UNIX文件系统调用对不同介质上的不同文件系统进行读写操作[4]。虚拟文件系统的目的是为了屏蔽各种各样不同文件系统的相异操作形式,使得异构的文件系统可以在统一的形式下,以标准化的方法访问、操作。实现虚拟文件系统利用的主要思想是引入一个通用文件模型——该模型抽象出了文件系统的所有基本操作(该通用模型源于Unix风格的文件系统),比如读、写操作等。同时实际文件系统如果希望利用虚拟文件系统,既被虚拟文件系统支持,也必须将自身的诸如,“打开文件”、“读写文件”等操作行为以及“什么是文件”,“什么是目录”等概念“修饰”成虚拟文件系统所要求的(定义的)形式,这样才能够被虚拟文件系统支持和使用。我们可以借用面向对象的一些思想来理解虚拟文件系统,虚拟文件系统好比一个抽象类或接口,它定义(但不实现)了文件系统最常见的操作行为。而具体文件系统好比是具体类,它们是特定文件系统的实例。具体文件系统和虚拟文件系统的关系类似具体类继承抽象类或实现接口。而在用户看到或操作的都是抽象类或接口,但实际行为却发生在具体文件系统实例上。至于如何将对虚拟文件系统的操作转化到对具体文件系统的实例,就要通过注册具体文件系统到系统,然后再安装具体文件系统才能实现转化,这点可以想象成面向对象中的多态概念。我们个实举例来说明具体文件系统如何通过虚拟文件系统协同工作。例如:假设一个用户输入以下shell命令:$ cp /hda/test1 /removable/test2其中 /removable是MS-DOS磁盘的一个安装点,而 /hda 是一个标准的第二扩展文件系统( Ext2)的目录。cp命令不用了解test1或test2的具体文件系统,它所看到和操作的对象是VFS。cp首先要从ext3文件系统读出test1文件,然后写入MS-DOS文件系统中的test2。VFS会将找到ext3文件系统实例的读方法,对test1文件进行读取操作;然后找到MS-DOS(在Linux中称VFAT)文件系统实例的写方法,对test2文件进行写入操作。可以看到 VFS是读写操作的统一界面,只要具体文件系统符合VFS所要求的接口,那么就可以毫无障碍地透明通讯了。 Unix风格的文件系统虚拟文件系统的通用模型源于Unix风格的文件系统,所谓Unix风格是指Unix传统上文件系统传统上使用了四种和文件系统相关的抽象概念:文件(file)、目录项(dentry)、索引节点(inode)和安装点(mount point)。文件——在Unix中的文件都被看做是一有序字节串,它们都有一个方便用户或系统识别的名称。另外典型的文件操作有读、写、创建和删除等。目录项——不要和目录概念搞混淆,在Linux中目录被看作文件。而目录项是文件路径中的一部分。一个文件路径的例子是“/home/wolfman/foo”——根目录是/,目录home,wolfman和文件foo都是目录项。索引节点——Unix系统将文件的相关信息(如访问控制权限、大小、拥有者、创建时间等等信息),有时被称作文件的元数据(也就是说,数据的数据)被存储在一个单独的数据结构中,该结构被称为索引节点(inode)。安装点——在Unix中,文件系统被安装在一个特定的安装点上,所有的已安装文件系统都作为根文件系统树中的叶子出现在系统中。上述概念是Unix文件系统的逻辑数据结构,但相应的Unix文件系统(Ext2等)磁盘布局也实现了部分上述概念,比如文件信息(文件数据元)存储在磁盘块中的索引节点上。当文件被载如内存时,内核需要使用磁盘块中的索引点来装配内存中的索引接点。类似行为还有超级块信息等。对于非Unix风格文件系统,如FAT或NTFS,要想能被VFS支持,它们的文件系统代码必须提供这些概念的虚拟形式。比如,即使一个文件系统不支持索引节点,它也必须在内存中装配起索引节点结构体——如同本身固有一样。或者,如果一个文件系统将目录看作是一种特殊对象,那么要想使用VFS,必须将目录重新表示为文件形式。通常,这种转换需要在使用现场引入一些特殊处理,使得非Unix文件系统能够兼容Unix文件系统的使用规则和满足VFS的需求。通过这些处理,非Unix文件系统便可以和VFS一同工作了,是性能上多少会受一些影响[5]。这点很重要,我们实现自己文件系统时必须提供(模拟)Unix风格文件系统的抽象概念。Linux文件系统中使用的对象Linux文件系统的对象就是指一些数据结构体,之所以称它们是对象,是因为这些数据结构体不但包含了相关属性而且还包含了操作自身结构的函数指针,这种将数据和方法进行封装的思想和面向对象中对象概念一致,所以这里我们就称它们是对象。Linux文件系统使用大量对象,我们简要分析以下VFS相关的对象,和除此还有和进程相关的一些其它对象。VFS相关对象这里我们不展开讨论每个对象,仅仅是为了内容完整性,做作简要说明。VFS中包含有四个主要的对象类型,它们分别是:超级块对象,它代表特定的已安装文件系统。索引节点对象,它代表特定文件。目录项对象,它代表特定的目录项。文件对象,它代表和进程打开的文件。每个主要对象中都包含一个操作对象,这些操作对象描述了内核针对主要对象可以使用的方法。最主要的几种操作对象如下:super_operations对象,其中包括内核针对特定文件系统所能调用的方法,比如read_inode()和sync_fs()方法等。inode_operations对象,其中包括内核针对特定文件所能调用的方法,比如create()和link()方法等。dentry_operations对象,其中包括内核针对特定目录所能调用的方法,比如d_compare()和d_delete()方法等。file对象,其中包括,进程针对已打开文件所能调用的方法,比如read()和write()方法等。除了上述的四个主要对象外,VFS还包含了许多对象,比如每个注册文件系统都是由file_system_type对象表示——描述了文件系统及其能力(如比如ext3或XFS);另外每一个安装点也都利用vfsmount对象表示——包含了关于安装点的信息,如位置和安装标志等。其它VFS对象系统上的每一进程都有自己的打开文件,根文件系统,当前工作目录,安装点等等。另外还有几个数据结构体将VFS层和文件的进程紧密联系,它们分别是:file_struct 和fs_structfile_struct结构体由进程描述符中的files项指向。所有包含进程的信息和它的文件描述符都包含在其中。第二个和进程相关的结构体是fs_struct。该结构由进程描述符的fs项指向。它包含文件系统和进程相关的信息。每种结构体的详细信息不在这里说明了。缓存对象除了上述一些结构外,为了缩短文件操作响应时间,提高系统性能,Linux系统采用了许多缓存对象,例如目录缓存、页面缓存和缓冲缓存(已经归入了页面缓存),这里我们对缓存做简单介绍。页高速缓存(cache)是 Linux内核实现的一种主要磁盘缓存。其目的是减少磁盘的I/O操作,具体的讲是通过把磁盘中的数据缓存到物理内存中去,把对磁盘的I/O操作变为对物理内存的I/O操作。页高速缓存是由RAM中的物理页组成的,缓存中每一页都对应着磁盘中的多个块。每当内核开始执行一个页I/O操作时(通常是对普通文件中页大小的块进行磁盘操作),首先会检查需要的数据是否在高速缓存中,如果在,那么内核就直接使用高速缓存中的数据,从而避免了访问磁盘。但我们知道文件系统只能以每次访问数个块的形式进行操作。内核执行所有磁盘操作都必须根据块进行,一个块包含一个或多个磁盘扇区。为此,内核提供了一个专门结构来管理缓冲buffer_head。缓冲头[6]的目的是描述磁盘扇区和物理缓冲之间的映射关系和做I/O操作的容器。但是缓冲结构并非独立存在,而是被包含在页高速缓存中,而且一个页高速缓存可以包含多个缓冲。我们将在文件后面的文件读写部分看到数据如何被从磁盘扇区读入页高速缓存中的缓冲中的。文件系统的注册和安装使用文件系统前必须对文件系统进行注册和安装,下面分别对这两种行为做简要介绍。文件系统的注册VFS要想能将自己定义的接口映射到实际文件系统的专用方法上,必须能够让内核识别实际的文件系统,实际文件系统通过将代表自身属性的文件类型对象(file_system_type)注册(通过register_filesystem()函数)到内核,也就是挂到内核中的文件系统类型链表上,来达到使文件系统能被内核识别的目的。反过来内核也正是通过这条链表来跟踪系统所支持的各种文件系统的。我们简要分析一下注册步骤:struct file_system_type {const char *name; /*文件系统的名字*/int fs_flags; /*文件系统类型标志*//*下面的函数用来从磁盘中读取超级块*/struct super_block * (*read_super) (struct file_system_type *, int,const char *, void *);struct file_system_type * next; /*链表中下一个文件系统类型*/struct list_head fs_supers; /*超级块对象链表*/};其中最重要的一项是read_super()函数,它用来从磁盘上读取超级块,并且当文件系统被装载时,在内存中组装超级块对象。要实现一个文件系统首先需要实现的结构体便是file_system_type结构体。注册文件系统只能保证文件系统能被系统识别,但此刻文件系统尚不能使用,因为它还没有被安装到特定的安装点上。所以在使用文件系统前必须将文件系统安装到安装点上。文件系统被实际安装时,将在安装点创建一个vfsmount结构体。该结构体用代表文件系统的实例——换句话说,代表一个安装点。vfsmount结构被定义在<linux/mount.h>中,下面是具体结构―――――――――――――――――――――――――――――――――――――――struct vfsmount{struct list_head mnt_hash; /*哈希表*/struct vfsmount *mnt_parent; /*父文件系统*/struct dentry *mnt_mountpoint; /*安装点的目录项对象*/struct dentry *mnt_root; /*该文件系统的根目录项对象*/struct super_block *mnt_sb; /*该文件系统的超级块*/struct list_head mnt_mounts; /*子文件系统链表*/struct list_head mnt_child; /*和父文件系统相关的子文件系统*/atomic_t mnt_count; /*使用计数*/int mnt_flags; /*安装标志*/char *mnt_devname; /*设备文件名字*/struct list_head mnt_list; /*描述符链表*/};――――――――――――――――――――――――――――――――――――――文件系统如果仅仅注册,那么还不能被用户使用。要想使用它还必须将文件系统安装到特定的安装点后才能工作。下面我们接着介绍文件系统的安装[7]过程。安装过程用户在用户空间调用mount()命令——指定安装点、安装的设备、安装类型等——安装指定文件系统到指定目录。mount()系统调用在内核中的实现函数为sys_mount(),该函数调用的主要例程是do_mount(),它会取得安装点的目录项对象,然后调用do_add_mount()例程。do_add_mount()函数主要做的是首先使用do_kern_mount()函数创建一个安装点,再使用graft_tree()将安装点作为叶子与根目录树挂接起来。整个安装过程中最核心的函数就是do_kern_mount()了,为了创建一个新安装点(vfsmount),该函数需要做一下几件事情:l 1 检查安装设备的权利,只有root权限才有能力执行该操作。l 2 Get_fs_type()在文件链表中取得相应文件系统类型(注册时被填加到练表中)。l 3 Alloc_vfsmnt()调用slab分配器为vfsmount结构体分配存储空间,并把它的地址存放在mnt局部变量中。l 4 初始化mnt->mnt_devname域l 5 分配新的超级块并初始化它。do_kern_mount( )检查file_system_type描述符中的标志以决定如何进行如下操作:根据文件系统的标志位,选择相应的方法读取超级块(比如对Ext2,romfs这类文件系统调用get_sb_dev();对于这种没有实际设备的虚拟文件系统如 ramfs调用get_sb_nodev())——读取超级块最终要使用文件系统类型中的read_super方法。安装过程做的最主要工作是创建安装点对象,挂接给定文件系统到根文件系统的指定接点下,然后初始化超级快对象,从而获得文件系统基本信息和相关操作方法(比如读取系统中某个inode的方法)。总而言之,注册过程是告之内核给定文件系统存在于系统内;而安装是请求内核对给定文件系统进行支持,使文件系统真正可用。转载

5. 常见的文件系统有哪些

常见的文件系统有FAT、NTFS、ExtFAT、ext2、ext3、reiserFS、VFAT、APFS。

1、FAT文件系统。

FAT文件系统诞生于年,它最初是为软盘设计的文件系统,但是后来随着微软推出dos和win 9x系统,FAT文件系统经过适配被逐渐用到了硬盘上,并且在那时的20年中,一直是主流的文件系统。

2、NTFS文件系统。

它是一种比FAT32功能更加强大的文件系统,从windows 2000之后的windows系统的默认文件系统都是NTFS,而且这些windows系统只能够安装在NTFS格式的磁盘上。NTFS系统是一个日志性的文件系统,系统中对文件的操作都可以被记录下来,当系统崩溃之后,利用日志功能可以修复数据。

3、ExtFAT文件系统。

ExFAT也是微软开发的文件系统,它是专门为闪存盘设计的文件系统,单个文件突破了4G的限制,而且分区的最大容量可达64ZB,建议512TB。 ExFAT在windows,Linux以及Mac系统上,都可以读写,作为U盘或者是移动硬盘的格式还是比较合适的。

4、ext2文件系统。

ext2是为解决ext文件系统的缺陷而设计的可扩展的、高性能的文件系统,又被称为二级扩展文件系统。它是Linux文件系统中使用最多的类型,并且在速度和CPU利用率上较为突出。ext2存取文件的性能极好,并可以支持256字节的长文件名,是GNU/Linux系统中标准的文件系统。

5、ext3文件系统。

ext3是ext2文件系统的日志版本,它在ext2文件系统中增加了日志的功能。ext3提供了3种日志模式:日志(journal)、顺序(ordered)和回写(writeback)。与ext2相比,ext3提供了更好的安全性以及向上向下的兼容性能。

6、reiserFS文件系统。

reiserFS是Linux环境下最稳定的日志文件系统之一,使用快速的平衡二叉树(binary tree)算法来查找磁盘上的自由空间和已有的文件,其搜索速度高于ext2,reiserFS能够像其他大多数文件系统一样,可动态的分配索引节,而无须在文件系统中创建固定的索引节。

7、VFAT文件系统。

VFAT主要用于处理长文件的一种文件名系统,它运行在保护模式下并使用VCACHE进行缓存,并具有和Windows系列文件系统和Linux文件系统兼容的特性。因此VFAT可以作为Windows和Linux交换文件的分区。

8、APFS文件系统。

APFS是苹果公司发布的新的文件格式,替代目前所使用的HFS+格式。这一全新文件系统专门针对闪存/SSD进行优化,提供了更强大的加密、写入时复制元数据、空间分享、文件和目录克隆、快照、目录大小快速调整、原子级安全存储基元,以及改进的文件系统底层技术。

6. windows下文件系统驱动开发需要那些东西要学

先下载一个winddk,之后找微软的msdn看看虽然都是英文,但都是第一手资料,winddk里有fat32驱动的完整源码,你可以试着编译,替换现有的驱动,强烈建议,开发驱动用虚拟机你要实现简单的功能的话,可以用dokan的api封装的很好啊,还有很多网上的教程可用

7. 如何制作 linux 文件系统

一、什么是文件系统 (Filesystem)文件系统是包括在一个磁盘(包括光盘、软盘、闪盘及其它存储设备)或分区的目录结构;一个可应用的磁盘设备可以包含一个或多个文件系统;如果您想进入一个文件系统,首先您要做的是挂载(mount)文件系统;为了挂载(mount)文件系统,您必须指定一个挂载点。二、主要嵌入式采用的文件系统Linux 中,rootfs 是必不可少的。PC 上主要实现有 ramdisk 和直接挂载 HD(Harddisk,硬盘) 上的根文件系统;嵌入式中一般不从 HD 启动,而是从 Flash 启动,最简单的方法是将 rootfs load 到 RAM 的 RAMDisk,稍复杂的就是 直接从Flash 读取的 Cramfs,更复杂的是在 Flash 上分区,并构建 JFFS2 等文件系统。RAMDisk 将制作好的 rootfs 压缩后写入 Flash,启动的时候由 Bootloader load 到RAM,解压缩,然后挂载到 /.这种方法操作简单,但是在 RAM 中的文件系统不是压缩的,因此需要占用许多嵌入式系统中稀有资源 RAM.ramdisk 就是用内存空间来模拟出硬盘分区,ramdisk通常使用磁盘文件系统的压缩存放在flash中,在系统初始化时,解压缩到SDRAM并挂载根文件系统, 在linux系统中,ramdisk有二种,一种就是可以格式化并加载,在linux内核2.0/2.2就已经支持,其不足之处是大小固定;另一种是 2.4的内核才支持,通过,ramfs来实现,他不能被格式化,但用起来方便,其大小随所需要的空间增加或减少,是目前linux常用的ramdisk技术。initrd 是 RAMDisk 的格式,kernel 2.4 之前都是 image-initrd,Kernel 2.5 引入了 cpio-initrd,大大简化了 Linux 的启动过程,附合 Linux 的基本哲学:Keep it simple, stupid(KISS)。 不过cpio-initrd 作为新的格式,还没有经过广泛测试,嵌入式 Linux 中主要采用的还是 image-initrd.Cramfs 是 Linus 写的很简单的文件系统,有很好的压缩绿,也可以直接从 Flash 上运行,不须 load 到 RAM 中,因此节约了 RAM.但是 Cramfs 是只读的,对于需要运行时修改的目录(如: /etc, /var, /tmp)多有不便,因此,一般将这些目录做成ramfs 等可写的 fs.SquashFS 是对 Cramfs 的增强。突破了 Cramfs 的一些限制,在 Flash 和 RAM 的使用量方面也具有优势。不过,据开发者介绍,在性能上可能不如 Cramfs.这也是一种新方法,在嵌入式系统采用之前,需要经过更多的测试三、建一个包含所有文件的目录1、建一个目录rootfs 用来装文件系统2、mkdir bin dev etc lib proc sbin tmp usr var3、ln -fs bin/busybox linuxrc(使用busybox)4、到系统 /dev 把所有的device打一个包,拷贝到 dev下面(最省事的做法);或者使用mknod来自己建所需要的device,我自己用的如下:crw-rw-rw- 1 root root 5, 1 2006-02-24 13:12 console crw-rw-rw- 1 root root 5, 64 2006-02-24 13:12 cua0 crw-rw-rw- 1 root root 63, 0 2006-02-24 13:12 dk0 crw-rw-rw- 1 root root 63, 1 2006-02-24 13:12 dk1 drwxr-xr-x 2 root root 4096 2006-02-24 13:12 flash brw-rw-rw- 1 root root 3, 0 2006-02-24 13:12 hda crw-rw-rw- 1 root root 36, 10 2006-02-24 13:12 ipsec crw-rw-rw- 1 root root 241, 0 2006-02-24 13:12 ixNpe crw-rw-rw- 1 root root 1, 2 2006-02-24 13:12 kmem crw-rw-rw- 1 root root 126, 0 2006-02-24 13:12 ledman lrwxrwxrwx 1 root root 16 2007-09-19 14:08 log -> /tmp/var/log/log crw-rw-rw- 1 root root 1, 1 2006-02-24 13:12 mem crw-rw-rw- 1 root root 90, 0 2006-02-24 13:12 mtd0 brw-rw-rw- 1 root root 31, 0 2006-02-24 13:12 mtdblock0 brw-rw-rw- 1 root root 31, 1 2006-02-24 13:12 mtdblock1 brw-rw-rw- 1 root root 31, 2 2006-02-24 13:12 mtdblock2 brw-rw-rw- 1 root root 31, 3 2006-02-24 13:12 mtdblock3 brw-rw-rw- 1 root root 31, 4 2006-02-24 13:12 mtdblock4 brw-rw-rw- 1 root root 31, 5 2006-02-24 13:12 mtdblock5 brw-rw-rw- 1 root root 31, 6 2006-02-24 13:12 mtdblock6 crw-rw-rw- 1 root root 90, 1 2006-02-24 13:12 mtdr0 crw-rw-rw- 1 root root 1, 3 2006-02-24 13:12 null crw-rw-rw- 1 root root 108, 0 2006-02-24 13:12 ppp crw-r——r—— 1 root root 5, 2 2006-03-29 15:56 ptmx drwxr-xr-x 2 root root 4096 2006-03-29 15:56 pts crw-rw-rw- 1 root root 2, 0 2006-02-24 13:12 ptyp0 brw-rw-rw- 1 root root 1, 0 2006-02-24 13:12 ram0 crw-rw-rw- 1 root root 1, 8 2006-02-24 13:12 random crw-rw-rw- 1 root root 5, 0 2006-02-24 13:12 tty crw-rw-rw- 1 root root 4, 0 2006-02-24 13:12 tty0 crw-rw-rw- 1 root root 3, 0 2006-02-24 13:12 ttyp0 crw-rw-rw- 1 root root 4, 64 2006-02-24 13:12 ttyS0 crw-rw-rw- 1 root root 1, 9 2006-02-24 13:12 urandom crw-rw-rw- 1 root root 1, 5 2006-02-24 13:12 zero举例: mknod console c 5 1 这样 crw-rw-rw- 1 root root 5, 1 2006-02-24 13:12 console5、将编译好的busybox拷贝到/bin下面,除了busybox外,所有其他的命令都是他的linkash chgrp clear dd echo fgrep gzip ip ls modprobe mv ping pwd sed stty tar true zcat busybox chmod cp df egrep grep hostname kill mkdir more netstat ping2file rm sh sync tftp umount cat chown date dmesg false gunzip ifconfig ln mknod mount pidof ps rmdir sleep sysinfo touch uname所有的命令你可以在busybox下面用make menuconfig来增减6、同样/sbin下面也是busybox的linkhalt ifconfig init insmod klogd losetup lsmod mkswap modprobe reboot rmmod route swapoff swapon[NextPage]7、同样/usr/bin下面也是busybox的linkbasename dirname env free id logger reset tail tr tty uptime which xargsawk cut expr head killall mkfifo sort test traceroute uniq wc whoami yes上面几乎是最全的link,各个看官可以酌情删减,不过link也不占什么空间!8、同样/usr/sbin下面放着所有编译完的可执行文件,具体就不多说了9、非常重要之/lib,务必重视找到你编译环境的target目录,把需要的lib文件先用strip压缩(非target目录下的,而已编译环境提供的strip),先把最基本的libc, ld等等,必须同样做跟target/lib里面一样的link.然后根据特定的应用加相应的lib,不要把不用的加进去,lib比较占空间。10、在/etc下面加上需要的配置文件,最最重要的是rcS#!/bin/sh export PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/sbin/scripts UTC=yes mount -n -t proc proc /proc mount -n -t ramfs ramfs /tmp mount -n -t devpts devpts /dev/pts # build var directories /bin/mkdir -m 0777 /tmp/var /bin/mkdir -m 0777 /var/lock /bin/mkdir -m 0777 /var/log /bin/mkdir -m 0777 /var/run /bin/mkdir -m 0777 /var/tmp #/bin/mkdir -m 0777 /tmp/etc #/bin/cp -a /usr/etc//etc #/bin/cp -a /usr/dev//dev/ # loads the NPE ethernet moles into the kernel. insmod /lib/moles/2.6.13.2/intel/ixp400.ko # Firmware code for NPE Engine. cat /etc/IxNpeMicrocode.dat > /dev/ixNpe insmod /lib/moles/2.6.13.2/intel/ixp400_eth.ko netdev_max_backlog=500 insmod /lib/moles/led.ko insmod /lib/moles/push_button.ko下面的具体应用没有再举例加上了,这个是系统init必须的。其他的情况类似如此了,下面里面给了一个lunksys的GPL项目的target.四、生成一个ramdisk#!/bin/sh MODULE_NAME=ramdisk RAMPATH=`pwd` TMPPATH=${RAMPATH}/tmp SOURCE=${RAMPATH}/……/target if [ ! -d ${TMPPATH} ] then mkdir ${TMPPATH} fi if [ `whoami` != 'root' ] then { echo "You should run the shell as root, Please rerun as a root." echo "Aborting." exit 1 } fi # Clear in tmp path rm -rf ${TMPPATH}/tmpmnt rm -rf ${TMPPATH}/ramrootfs mkdir ${TMPPATH}/tmpmnt # Clear the old ramdisk rm -f ${RAMPATH}/$MODULE_NAME # Make a temp file which size is suitable dd if=/dev/zero of=${TMPPATH}/ramrootfs bs=1k count=6144 # Create a ext2 filesystem mke2fs -F -m 0 -i 2000 ${TMPPATH}/ramrootfs # Mount it to tmpmnt/ mount -o loop -t ext2 ${TMPPATH}/ramrootfs ${TMPPATH}/tmpmnt # Copy everything from kernel to this. cd ${TMPPATH}/tmpmnt echo ${SOURCE} cp -av ${SOURCE}/. cd ${TMPPATH} # Unmount it the ext2 filesystem umount ${TMPPATH}/tmpmnt cat ${TMPPATH}/ramrootfs | gzip -9 > /${RAMPATH}/ramdisk echo Copying ramdisk image to ${RAMPATH} sync这里给出一个自动生成脚本!五、生成一个cramfs找到cramfs的toolchain./mkcramfs -r $(FS1_DIR) $(FS_NAME)。1六、生成一个mksquashfs找到squashfs的toolchain./mksquashfs $(FS_DIR) $(FS_NAME) -noappend -be -lzma -no-fragments -noI做文件系统最困难和最可能出问题的地方是在/lib库和/dev方面,请大家多注意这两方面。

8. 文件系统的概念有什么区别

【概念抄】文件系统是操袭作系统用于明确磁盘或分区上的文件的方法和数据结构;即在磁盘上组织文件的方法。也指用于存储文件的磁盘或分区,或文件系统种类。操作系统中负责管理和存储文件信息的软件机构称为文件管理系统,简称文件系统。文件系统由三部分组成:与文件管理有关软件、被管理文件以及实施文件管理所需数据结构。从系统角度来看,文件系统是对文件存储器空间进行组织和分配,负责文件存储并对存入的文件进行保护和检索的系统。===========【区别】目前的文件系统一般分为FAT、NTFS、HFS(由苹果电脑开发,并使用在Mac OS上的文件系统)、Ext2、Ext3、Ext4(这3个是Linux 系统中标准的文件系统).是不同公司开发的不同文件系统,各有优缺点如果感兴趣,可以看这里,有详细介绍http://ke..com/view/266589.htm

9. linux下使用fuse开发文件系统

Linux内核暂时不支持NTFS文件系统,但是可以通过FUSE+NTFS-3g驱动来完成对NTFS功能和易用性十分强大。我一直都在使用。 ,

未经允许不得转载:山九号 » 开发文件系统|如何在 Linux下实现一个文件系统

赞 (0)