hdfs文件内容|hdfs api创建文件并写入内容

hdfs文件内容|hdfs api创建文件并写入内容的第1张示图

❶ HDFS中的一个文件的内容可不可以一行一行地读取出来

当然可以,在直接读取输入的内容,然后按行读取,就行了,只要按规矩输出,中间的java代码很灵活的,

❷ hdfs的特点有哪些

hdfs的特点一、hdfs的优点1.支持海量数据的存储:一般来说,HDFS存储的文件可以支持TB和PB级别的数据。2.检测和快速应对硬件故障:在集群环境中,硬件故障是常见性问题。因为有上千台服务器连在一起,故障率很高,因此故障检测和自动恢复hdfs文件系统的一个设计目标。假设某一个datanode挂掉之后,因为数据是有备份的,还可以从其他节点里找到。namenode通过心跳机制来检测datanode是否还存活。3.流式数据访问:(HDFS不能做到低延迟的数据访问,但是HDFS的吞吐量大)=》Hadoop适用于处理离线数据,不适合处理实时数据。HDFS的数据处理规模比较大,应用一次需要大量的数据,同时这些应用一般都是批量处理,而不是用户交互式处理。应用程序能以流的形式访问数据库。主要的是数据的吞吐量,而不是访问速度。访问速度最终是要受制于网络和磁盘的速度,机器节点再多,也不能突破物理的局限。4.简化的一致性模型:对于外部使用用户,不需要了解hadoop底层细节,比如文件的切块,文件的存储,节点的管理。一个文件存储在HDFS上后,适合一次写入,多次读取的场景。因为存储在HDFS上的文件都是超大文件,当上传完这个文件到hadoop集群后,会进行文件切块,分发,复制等操作。如果文件被修改,会导致重新触发这个过程,而这个过程耗时是最长的。所以在hadoop里,2.0版本允许数据的追加,单不允许数据的修改。5.高容错性:数据自动保存多个副本,副本丢失后自动恢复。可构建在廉价的机器上,实现线性扩展。当集群增加新节点之后,namenode也可以感知,将数据分发和备份到相应的节点上。6.商用硬件:Hadoop并不需要运行在昂贵且高可靠的硬件上。它是设计运行在商用硬件(在各种零售店都能买到的普通硬件)的集群上的,因此至少对于庞大的集群来说,节点故障的几率还是非常高的。HDFS遇到上述故障时,被设计成能够继续运行且不让用户察觉到明显的中断。二、HDFS缺点(局限性)1、不能做到低延迟数据访问:由于hadoop针对高数据吞吐量做了优化,牺牲了获取数据的延迟,所以对于低延迟数据访问,不适合hadoop。对于低延迟的访问需求,HBase是更好的选择。2、不适合大量的小文件存储 :由于namenode将文件系统的元数据存储在内存中,因此该文件系统所能存储的文件总数受限于namenode的内存容量。根据经验,每个文件、目录和数据块的存储信息大约占150字节。因此,如果有一百万个小文件,每个小文件都会占一个数据块,那至少需要300MB内存。如果是上亿级别的,就会超出当前硬件的能力。3、修改文件:对于上传到HDFS上的文件,不支持修改文件。Hadoop2.0虽然支持了文件的追加功能,但是还是不建议对HDFS上的文件进行修改。因为效率低下。HDFS适合一次写入,然后多次读取的场景。4、不支持用户的并行写:同一时间内,只能有一个用户执行写操作。

❸ hdfs api创建文件并写入内容

Hadoop中关于文件操作类基本上全部是在"org.apache.hadoop.fs"包中,这些API能够支持的操作包含:打开文件,读写文件,删除文件等。

Hadoop类库中最终面向用户提供的接口类是FileSystem,该类是个抽象类,只能通过来类的get方法得到具体类。get方法存在几个重载版本,常用的是这个:

❹ 分布式文件系统hdfs主要由哪些功能模块构成

HDFS命名空间采用层次化(树状——译者注)的结构存放文件和目录。文件和目录用NameNode上的inodes表示。Inode记录了权限,修改和访问时间,命名空间,磁盘容量等属性。文件内容会被分成不同的“大块”(典型分块策略是每块128M,不过用户可以对每个文件的分块大小进行选择)。NameNode负责维护命名空间树以及与DataNode上文件分块的映射关系。目前采用的设计结构是,没一个集群只有一个NameNode,一个NameNode可以对应多个DataNode以及成千上万的HDFS客户端。一个DataNode可以同步执行多个应用任务。

❺ HDFS能够存储哪几种文件格式

hdfs可以存储任何形式的文件啊。只要你硬盘能存储什么文件,它就能存储什么。其实文件就其本质,都是0001101001这种二进制数据。所以什么形式都可以的。但是如果不是这种ascii形式的文件,你读取他有什么意思呢比如一部电影,你放上去能处理吗对吧

❻ 对hdfs文件操作有哪

put,get

❼ hadoop 有几种hdfs这样的文件格式

同一行的数据存储在一起,即连续存储。SequenceFile,MapFile,Avro Datafile。采用这种方式,如果只需要访问行的一小部分数据,亦需要将整行读入内存,推迟序列化一定程度上可以缓解这个问题,但是从磁盘读取整行数据的开销却无法避免。面向行的存储适合于整行数据需要同时处理的情况。

❽ 如何快速从hdfs上检索需要的文本

A1.该索引叫FsImage, 但没有对外提供api, 参考 附录的链接1整个文件系统的名字空间,包括数据块到文件的映射、文件的属性等,都存储在一个称为FsImage的文件中,这个文件也是放在Namenode所在的本地文件系统上。A2. FS Shell, 详细请参考链接21)hadoop fs -ls 功能跟shell 的 ls 命令相同2)hadoop fs -lsr ls命令的递归版本。类似于Unix中的ls -R。如果要实现复杂的查找功能,可以考虑用下述方式hadoop fs -lsr / | awk/sed/grep …..

未经允许不得转载:山九号 » hdfs文件内容|hdfs api创建文件并写入内容

赞 (0)